Link : 2.Multiple Linear - Google Drive

#importing the Libraies
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Reading the Dataset
dataset = pd.read_csv('50_Startups.csv')

dataset

dataset.columns

dataset=pd.get_dummies(dataset,drop_first=True)

dataset

indep=dataset[['R&D Spend','Administration', 'Marketing Spend','State_Florida', 'State_New York']]
dep=dataset[['Profit']]

indep

dep

#split into training set and test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(indep, dep, test_size = 1/3, random_state = 0)

X_train

X_train.shape

y_train

y_train.shape

X_test

X_test.shape

y_test

y_test.shape

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)#y=W*x1+b0 for this equation we got value for b1 and bo

# Viewing the b1 and bo value
weight=regressor.coef_
print("Weight of the model={}".format(weight))
bais=regressor.intercept_
print("Intercept of the model={}".format(bais))

y_pred=regressor.predict(X_test)

#<https://scikit-learn.org/stable/modules/model_evaluation.html>

from sklearn.metrics import r2_score
r_score=r2_score(y_test,y_pred)

r_score

import pickle

filename="mulline_final.sav"
pickle.dump(regressor,open(filename,"wb"))

model=pickle.load(open(filename,"rb"))

rd_input=float(input("R&D:"))
admin_input=float(input("Admin"))
mark_input=float(input("Marketing "))
fol_input=int(input("State_flo 0 or 1:"))
new_input=int(input("State_new 0 or 1:"))

result=model.predict([[rd_input,admin_input,mark_input,fol_input,new_input]])

result

Dataset

R&D Spend Administration Marketing Spend State Profit
165349.2 136897.8 471784.1 New York 192261.83
162597.7 151377.59 443898.53 California 191792.06
153441.51 101145.55 407934.54 Florida 191050.39
144372.41 118671.85 383199.62 New York 182901.99
142107.34 91391.77 366168.42 Florida 166187.94
131876.9 99814.71 362861.36 New York 156991.12
134615.46 147198.87 127716.82 California 156122.51
130298.13 145530.06 323876.68 Florida 155752.6
120542.52 148718.95 311613.29 New York 152211.77
123334.88 108679.17 304981.62 California 149759.96
101913.08 110594.11 229160.95 Florida 146121.95
100671.96 91790.61 249744.55 California 144259.4
93863.75 127320.38 249839.44 Florida 141585.52
91992.39 135495.07 252664.93 California 134307.35
119943.24 156547.42 256512.92 Florida 132602.65
114523.61 122616.84 261776.23 New York 129917.04
78013.11 121597.55 264346.06 California 126992.93
94657.16 145077.58 282574.31 New York 125370.37
91749.16 114175.79 294919.57 Florida 124266.9
86419.7 153514.11 0 New York 122776.86
76253.86 113867.3 298664.47 California 118474.03
78389.47 153773.43 299737.29 New York 111313.02
73994.56 122782.75 303319.26 Florida 110352.25
67532.53 105751.03 304768.73 Florida 108733.99
77044.01 99281.34 140574.81 New York 108552.04
64664.71 139553.16 137962.62 California 107404.34
75328.87 144135.98 134050.07 Florida 105733.54
72107.6 127864.55 353183.81 New York 105008.31
66051.52 182645.56 118148.2 Florida 103282.38
65605.48 153032.06 107138.38 New York 101004.64
61994.48 115641.28 91131.24 Florida 99937.59
61136.38 152701.92 88218.23 New York 97483.56
63408.86 129219.61 46085.25 California 97427.84
55493.95 103057.49 214634.81 Florida 96778.92
46426.07 157693.92 210797.67 California 96712.8
46014.02 85047.44 205517.64 New York 96479.51
28663.76 127056.21 201126.82 Florida 90708.19
44069.95 51283.14 197029.42 California 89949.14
20229.59 65947.93 185265.1 New York 81229.06
38558.51 82982.09 174999.3 California 81005.76
28754.33 118546.05 172795.67 California 78239.91
27892.92 84710.77 164470.71 Florida 77798.83
23640.93 96189.63 148001.11 California 71498.49
15505.73 127382.3 35534.17 New York 69758.98
22177.74 154806.14 28334.72 California 65200.33
1000.23 124153.04 1903.93 New York 64926.08
1315.46 115816.21 297114.46 Florida 49490.75
0 135426.92 0 California 42559.73
542.05 51743.15 0 New York 35673.41
0 116983.8 45173.06 California 14681.4