Link : 2.Multiple Linear - Google Drive
#importing the Libraies
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Reading the Dataset
dataset = pd.read_csv('50_Startups.csv')
dataset
dataset.columns
dataset=pd.get_dummies(dataset,drop_first=True)
dataset
indep=dataset[['R&D Spend','Administration', 'Marketing Spend','State_Florida', 'State_New York']]
dep=dataset[['Profit']]
indep
dep
#split into training set and test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(indep, dep, test_size = 1/3, random_state = 0)
X_train
X_train.shape
y_train
y_train.shape
X_test
X_test.shape
y_test
y_test.shape
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)#y=W*x1+b0 for this equation we got value for b1 and bo
# Viewing the b1 and bo value
weight=regressor.coef_
print("Weight of the model={}".format(weight))
bais=regressor.intercept_
print("Intercept of the model={}".format(bais))
y_pred=regressor.predict(X_test)
#<https://scikit-learn.org/stable/modules/model_evaluation.html>
from sklearn.metrics import r2_score
r_score=r2_score(y_test,y_pred)
r_score
import pickle
filename="mulline_final.sav"
pickle.dump(regressor,open(filename,"wb"))
model=pickle.load(open(filename,"rb"))
rd_input=float(input("R&D:"))
admin_input=float(input("Admin"))
mark_input=float(input("Marketing "))
fol_input=int(input("State_flo 0 or 1:"))
new_input=int(input("State_new 0 or 1:"))
result=model.predict([[rd_input,admin_input,mark_input,fol_input,new_input]])
result
| R&D Spend | Administration | Marketing Spend | State | Profit |
|---|---|---|---|---|
| 165349.2 | 136897.8 | 471784.1 | New York | 192261.83 |
| 162597.7 | 151377.59 | 443898.53 | California | 191792.06 |
| 153441.51 | 101145.55 | 407934.54 | Florida | 191050.39 |
| 144372.41 | 118671.85 | 383199.62 | New York | 182901.99 |
| 142107.34 | 91391.77 | 366168.42 | Florida | 166187.94 |
| 131876.9 | 99814.71 | 362861.36 | New York | 156991.12 |
| 134615.46 | 147198.87 | 127716.82 | California | 156122.51 |
| 130298.13 | 145530.06 | 323876.68 | Florida | 155752.6 |
| 120542.52 | 148718.95 | 311613.29 | New York | 152211.77 |
| 123334.88 | 108679.17 | 304981.62 | California | 149759.96 |
| 101913.08 | 110594.11 | 229160.95 | Florida | 146121.95 |
| 100671.96 | 91790.61 | 249744.55 | California | 144259.4 |
| 93863.75 | 127320.38 | 249839.44 | Florida | 141585.52 |
| 91992.39 | 135495.07 | 252664.93 | California | 134307.35 |
| 119943.24 | 156547.42 | 256512.92 | Florida | 132602.65 |
| 114523.61 | 122616.84 | 261776.23 | New York | 129917.04 |
| 78013.11 | 121597.55 | 264346.06 | California | 126992.93 |
| 94657.16 | 145077.58 | 282574.31 | New York | 125370.37 |
| 91749.16 | 114175.79 | 294919.57 | Florida | 124266.9 |
| 86419.7 | 153514.11 | 0 | New York | 122776.86 |
| 76253.86 | 113867.3 | 298664.47 | California | 118474.03 |
| 78389.47 | 153773.43 | 299737.29 | New York | 111313.02 |
| 73994.56 | 122782.75 | 303319.26 | Florida | 110352.25 |
| 67532.53 | 105751.03 | 304768.73 | Florida | 108733.99 |
| 77044.01 | 99281.34 | 140574.81 | New York | 108552.04 |
| 64664.71 | 139553.16 | 137962.62 | California | 107404.34 |
| 75328.87 | 144135.98 | 134050.07 | Florida | 105733.54 |
| 72107.6 | 127864.55 | 353183.81 | New York | 105008.31 |
| 66051.52 | 182645.56 | 118148.2 | Florida | 103282.38 |
| 65605.48 | 153032.06 | 107138.38 | New York | 101004.64 |
| 61994.48 | 115641.28 | 91131.24 | Florida | 99937.59 |
| 61136.38 | 152701.92 | 88218.23 | New York | 97483.56 |
| 63408.86 | 129219.61 | 46085.25 | California | 97427.84 |
| 55493.95 | 103057.49 | 214634.81 | Florida | 96778.92 |
| 46426.07 | 157693.92 | 210797.67 | California | 96712.8 |
| 46014.02 | 85047.44 | 205517.64 | New York | 96479.51 |
| 28663.76 | 127056.21 | 201126.82 | Florida | 90708.19 |
| 44069.95 | 51283.14 | 197029.42 | California | 89949.14 |
| 20229.59 | 65947.93 | 185265.1 | New York | 81229.06 |
| 38558.51 | 82982.09 | 174999.3 | California | 81005.76 |
| 28754.33 | 118546.05 | 172795.67 | California | 78239.91 |
| 27892.92 | 84710.77 | 164470.71 | Florida | 77798.83 |
| 23640.93 | 96189.63 | 148001.11 | California | 71498.49 |
| 15505.73 | 127382.3 | 35534.17 | New York | 69758.98 |
| 22177.74 | 154806.14 | 28334.72 | California | 65200.33 |
| 1000.23 | 124153.04 | 1903.93 | New York | 64926.08 |
| 1315.46 | 115816.21 | 297114.46 | Florida | 49490.75 |
| 0 | 135426.92 | 0 | California | 42559.73 |
| 542.05 | 51743.15 | 0 | New York | 35673.41 |
| 0 | 116983.8 | 45173.06 | California | 14681.4 |