Code
#importing the Libraies
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset=pd.read_csv("Social_Network_Ads.csv")
dataset
dataset=pd.get_dummies(dataset,drop_first=True)
dataset
dataset=dataset.drop("User ID",axis=1)
dataset["Purchased"].value_counts()
indep=dataset[["Age","EstimatedSalary","Gender_Male"]]
dep=dataset["Purchased"]
indep.shape
dep
#split into training set and test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(indep, dep, test_size = 1/3, random_state = 0)
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import classification_report
clf_report = classification_report(y_test, y_pred)
print(clf_report)
print(cm)
classifier.predict([[40,300,1,]])
Dataset
User Purchase Data
| User ID |
Gender |
Age |
Estimated Salary |
Purchased |
| 15624510 |
Male |
19 |
19000 |
0 |
| 15810944 |
Male |
35 |
20000 |
0 |
| 15668575 |
Female |
26 |
43000 |
0 |
| 15603246 |
Female |
27 |
57000 |
0 |
| 15804002 |
Male |
19 |
76000 |
0 |
| 15728773 |
Male |
27 |
58000 |
0 |
| 15598044 |
Female |
27 |
84000 |
0 |
| 15694829 |
Female |
32 |
150000 |
1 |
| 15600575 |
Male |
25 |
33000 |
0 |
| 15727311 |
Female |
35 |
65000 |
0 |
| 15570769 |
Female |
26 |
80000 |
0 |
| 15606274 |
Female |
26 |
52000 |
0 |
| 15746139 |
Male |
20 |
86000 |
0 |
| 15704987 |
Male |
32 |
18000 |
0 |
| 15628972 |
Male |
18 |
82000 |
0 |
| 15697686 |
Male |
29 |
80000 |
0 |
| 15733883 |
Male |
47 |
25000 |
1 |
| 15617482 |
Male |
45 |
26000 |
1 |
| 15704583 |
Male |
46 |
28000 |
1 |
| 15621083 |
Female |
48 |
29000 |
1 |
| 15649487 |
Male |
45 |
22000 |
1 |
| 15736760 |
Female |
47 |
49000 |
1 |
| 15714658 |
Male |
48 |
41000 |
1 |
| 15599081 |
Female |
45 |
22000 |
1 |
| 15705113 |
Male |
46 |
23000 |
1 |
| 15631159 |
Male |
47 |
20000 |
1 |
| 15792818 |
Male |
49 |
28000 |
1 |
| 15633531 |
Female |
47 |
30000 |
1 |
| 15744529 |
Male |
29 |
43000 |
0 |
| 15669656 |
Male |
31 |
18000 |
0 |
| 15581198 |
Male |
31 |
74000 |
0 |
| 15729054 |
Female |
27 |
137000 |
1 |
| 15573452 |
Female |
21 |
16000 |
0 |
| 15776733 |
Female |
28 |
44000 |
0 |
| 15724858 |
Male |
27 |
90000 |
0 |
| 15713144 |
Male |
35 |
27000 |
0 |
| 15690188 |
Female |
33 |
28000 |
0 |
| 15689425 |
Male |
30 |
49000 |
0 |
| 15671766 |
Female |
26 |
72000 |
0 |
| 15782806 |
Female |
27 |
31000 |
0 |
| 15764419 |
Female |
27 |
17000 |
0 |
| 15591915 |
Female |
33 |
51000 |
0 |
| 15772798 |
Male |
35 |
108000 |
0 |
| 15792008 |
Male |
30 |
15000 |
0 |
| 15715541 |
Female |
28 |
84000 |
0 |
| 15639277 |
Male |
23 |
20000 |
0 |
| 15798850 |
Male |
25 |
79000 |
0 |
| 15776348 |
Female |
27 |
54000 |
0 |
| 15727696 |
Male |
30 |
135000 |
1 |
| 15793813 |
Female |
31 |
89000 |
0 |
| 15694395 |
Female |
24 |
32000 |
0 |
| 15764195 |
Female |
18 |
44000 |
0 |
| 15744919 |
Female |
29 |
83000 |
0 |
| 15671655 |
Female |
35 |
23000 |
0 |
| 15654901 |
Female |
27 |
58000 |
0 |
| 15649136 |
Female |
24 |
55000 |
0 |
| 15775562 |
Female |
23 |
48000 |
0 |
| 15807481 |
Male |
28 |
79000 |
0 |
| 15642885 |
Male |
22 |
18000 |
0 |
| 15789109 |
Female |
32 |
117000 |
0 |
| 15814004 |
Male |
27 |
20000 |
0 |
| 15673619 |
Male |
25 |
87000 |
0 |
| 15595135 |
Female |
23 |
66000 |
0 |
| 15583681 |
Male |
32 |
120000 |
1 |
| 15605000 |
Female |
59 |
83000 |
0 |
| 15718071 |
Male |
24 |
58000 |
0 |
| 15679760 |
Male |
24 |
19000 |
0 |
| 15654574 |
Female |
23 |
82000 |
0 |
| 15577178 |
Female |
22 |
63000 |
0 |
| 15595324 |
Female |
31 |
68000 |
0 |
| 15756932 |
Male |
25 |
80000 |
0 |
| 15726358 |
Female |
24 |
27000 |
0 |
| 15595228 |
Female |
20 |
23000 |
0 |
| 15782530 |
Female |
33 |
113000 |
0 |
| 15592877 |
Male |
32 |
18000 |
0 |
| 15651983 |
Male |
34 |
112000 |
1 |
| 15746737 |
Male |
18 |
52000 |
0 |
| 15774179 |
Female |
22 |
27000 |
0 |
| 15667265 |
Female |
28 |
87000 |
0 |
| 15655123 |
Female |
26 |
17000 |
0 |
| 15595917 |
Male |
30 |
80000 |
0 |
| 15668385 |
Male |
39 |
42000 |
0 |
| 15709476 |
Male |
20 |
49000 |
0 |
| 15711218 |
Male |
35 |
88000 |
0 |
| 15798659 |
Female |
30 |
62000 |
0 |
| 15663939 |
Female |
31 |
118000 |
1 |
| 15694946 |
Male |
24 |
55000 |
0 |
| 15631912 |
Female |
28 |
85000 |
0 |
| 15768816 |
Male |
26 |
81000 |
0 |
| 15682268 |
Male |
35 |
50000 |
0 |
| 15684801 |
Male |
22 |
81000 |
0 |
| 15636428 |
Female |
30 |
116000 |
0 |
| 15809823 |
Male |
26 |
15000 |
0 |
| 15699284 |
Female |
29 |
28000 |
0 |
| 15786993 |
Female |
29 |
83000 |
0 |
| 15709441 |
Female |
35 |
44000 |
0 |
| 15710257 |
Female |
35 |
25000 |
0 |
| 15582492 |
Male |
28 |
123000 |
1 |
| 15575694 |
Male |
35 |
73000 |
0 |